Saturday, 28 November 2015

Drowsy Detection Using LBP, OpenCV and python

Prequisites to learn and run the below code

I started learning pyton and opencv

These are the list of urls i followed to learn
http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html
https://www.youtube.com/playlist?list=PLA175E8A1816CD64B
I experimented and learnt many things about how to install using
pip
easy_install
Later i saw the below urls

http://scikit-learn.org/stable/modules/svm.html
http://scikit-image.org/docs/dev/auto_examples/plot_hog.html

and wrote the below code by using the code in the above urls

 import cv2
from skimage.feature import local_binary_pattern
import numpy as np
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('rightEye.xml')
nose_cascade = cv2.CascadeClassifier('haarcascade_mcs_nose.xml')

METHOD = 'uniform'

radius = 2
n_points = 8 * radius

def hist(ax, lbp):
    n_bins = lbp.max() + 1
    return ax.hist(lbp.ravel(), normed=True, bins=n_bins, range=(0, n_bins),
                   facecolor='0.5')
def kullback_leibler_divergence(p, q):
    p = np.asarray(p)
    q = np.asarray(q)
    filt = np.logical_and(p != 0, q != 0)
    return np.sum(p[filt] * np.log2(p[filt] / q[filt]))


def match(refs, img):
    best_score = 10
    best_name = None
    lbp = local_binary_pattern(img, n_points, radius, METHOD)
    n_bins = lbp.max() + 1
    hist, _ = np.histogram(lbp, normed=True, bins=n_bins, range=(0, n_bins))
    for name, ref in refs.items():
        ref_hist, _ = np.histogram(ref, normed=True, bins=n_bins,
                                   range=(0, n_bins))
        score = kullback_leibler_divergence(hist, ref_hist)
        if score < best_score:
            best_score = score
            best_name = name
    return best_name


brick = cv2.imread('eclosed.jpg')
brick= cv2.cvtColor(brick, cv2.COLOR_BGR2GRAY)
brick= cv2.resize(brick, (21,21),cv2.INTER_AREA)

grass = cv2.imread('eopen1.jpg')
grass = cv2.cvtColor(grass, cv2.COLOR_BGR2GRAY)
grass= cv2.resize(grass, (21,21),cv2.INTER_AREA)
wall = cv2.imread('eye2.jpg')
wall=cv2.cvtColor(wall, cv2.COLOR_BGR2GRAY)
wall= cv2.resize(wall, (21,21),cv2.INTER_AREA)

refs = {
    'brick': local_binary_pattern(brick, n_points, radius, METHOD),
    'grass': local_binary_pattern(grass, n_points, radius, METHOD),
    'wall': local_binary_pattern(wall, n_points, radius, METHOD)
}
cap = cv2.VideoCapture('sample1.avi')


if __name__ == "__main__":  
    while(cap.isOpened()):
        ret, img = cap.read()
        #img = cv2.imread('closed.png')
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(gray, 1.3, 5)
        for (x,y,w,h) in faces:
            img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
            roi_gray = gray[y:y+h, x:x+w]
            roi_color = img[y:y+h, x:x+w]
            eyes = eye_cascade.detectMultiScale(roi_gray)
            for (ex,ey,ew,eh) in eyes:
                cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
            #le = roi_color[eyes[0,1]:eyes[0,1]+eyes[0,3], eyes[0,0]:eyes[0,0]+eyes[0,2]]
            re = roi_color[eyes[1,1]:eyes[1,1]+eyes[1,3], eyes[1,0]:eyes[1,0]+eyes[1,2]]
            #le=cv2.cvtColor(le, cv2.COLOR_BGR2GRAY)
            re=cv2.cvtColor(re, cv2.COLOR_BGR2GRAY)
            re= cv2.resize(re, (21,21),cv2.INTER_AREA)
            #lstate=  match(refs, le)
            rstate=  match(refs, re)
            if rstate == 'brick':
  
                cv2.putText(img,'closed',(10,90),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,255),2,cv2.LINE_AA)
##            elif lstate == 'brick' or rstate == 'brick':
##                cv2.putText(img,'closed/open',(900,900),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,255),2,cv2.LINE_AA)
            else:
                cv2.putText(img,'open',(10,90),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,255),2,cv2.LINE_AA)
            cv2.imshow('frame',img)
            k= cv2.waitKey(1)
            if k == 32:#when u press spacebar
                cap.release()
                cv2.destroyAllWindows()

 Output:



Algorithm used:

Extracting Eye Module
Input: Video /Camera
Method:
For each frame do
      1. Detect the faces using Viola & Jones face detection algorithm
      2. Crop the face
      3. Detect the eyes in the cropped face using Viola & Jones eye detection               algorithm
            for each eye_bounding_box returned
                  find the pair of eye_bounding_boxes that are approximately equal in                 position in y-direction
      4. Crop the right eye
Output: eye_image

Eye State Detection Module
Input:
      open and closed eye training images and test eye image
Method:
      1. Measure a collection of LBPs for each eye image in training and test data
      2.Using  the histogram (equal-width bins)of LBP collections of each eye image in       training and test images, calculate the value of the normalized probability   density function at the bin.
      3. Calculate the distance between each training image's probability distribution       with the probability distributions of test image's  using Kullback-Leibler       Divergence.
      4.Output the one with least distance.
Output:
      State of the eye whether ‘closed’ or ‘open’

2 comments:

  1. Que genial proyecto.... estoy trabajando en algo parecido en un proyecto de la Universidad... una pregunta.. que version de Python, numpy,opencv estas utilizando?

    ReplyDelete
  2. python 2.7 and opencv 3 and i will tell you the numpy version soon

    ReplyDelete