Friday, 29 January 2021

Time complexity analysis of different looping program

 Analyze the time complexity of below function

Q1)

A()
{
    i=1;
    s=1;
    while(s<=n) 
    {
        i++;
        s=s+i;
        print "hi"
    }
}

for n=15 the values of i and s inside while loop as shown below:
i 1 2 3 4 5
s 1 3 6 10 15

for n=15, the while loop runs 5 times ..i.e, approximately sqrt(n) times
so time complexity = O(sqrt(n))

In depth explanation:
Let this while loop runs k times and after k iterations,
s would be sum of first k natural numbers.
and s must be >= n to come out of the loop

(k*(k+1))/2 = n
k*k+k >2*n
k*k approximately equal to n
k is approximately equal to sqrt(n)
===========================================
 Analyze the time complexity of below function

Q2)

A()
{
    i=1;
    for(i=1;i*i <=n;i++)
    {
        print "hi"
    }
time complexity = O(sqrt(n))
===========================================
Analyze the time complexity of below function

Q3) 

A()
{
    int i,j,k,n;
    for(i=1;i<=n;i++) 
    {
        for(j=1;j<=i;j++)
        {
            for(k=1;k<=100;k++)
                print "hi"
        }
    }
}

                    |i=1       |i=2 |i=3
j loop runs         |1 time      |1,2 that is 2 times |1,2,3 that is 3 times     
for each j k runs |100 times |2*100 times |k=3*100

= 100+2*100+3*100 +.....+n*100
                    = 100*(1+2+3+............+n)
                    = O(n*n)
==============================================================

Q4) 

A()
{
    int i,j,k,n;
    for(i=1;i<=n;i++) 
    {
        for(j=1;j<=i*i;j++)
        {
            for(k=1;k<=n/2;k++)
                print "hi"
        }
    }
}

                    |i=1       |i=2 |i=3 ..........n
j loop runs         |1 time      |1,2,3,4 i.e, 4 times |3*3=9 times......n*n     
for each j k runs |n/2 times |4*n/2 times |9*n/2........(n*n)* n/2

= n/2+4*(n/2)+9*(n/2) +.....+(n*n)* (n/2)
                    = n/2*(1+4+9+............+n*n)
                    = n/2*(n*(n+1)*(2*n+1))/6
                    = O(n*n*n*n)

====================================================================
Q5) 
for(i=1;i<n;i=i*2) 
{
print "hi"
}

i will take values 1,2,4....n
2^0, 2^1, 2^2.....2^k

2^k =n and k=log2(n)
===================================================================
Q6)

while(n>1)
{
n = n/2
}

if n=16 then 16,8,4,2..4 times ...log2(16) = log2(n) times
======================================================================
Q7)

for(i=n/2;i<=n;i++) ........................n/2 times
    {
        for(j=1;j<=n/2;j++) .............. n/2 times
        {
            for(k=1;k<=n;k = k*2) ....... log2(n) times
                print "hi"
        }
    }


= (n/2)*(n/2)*log2(n) = n*nlog2(n)
===========================================================================
Q8)
for(i=n/2;i<=n;i++) ........................n/2 times
    {
        for(j=1;j<=n;j = 2*j) .............. log2(n) times
        {
            for(k=1;k<=n;k = k*2) ....... log2(n) times
                print "hi"
        }
    }


= (n/2)*log2(n)*log2(n) = n*log2(n)*log2(n)



No comments:

Post a Comment